题目内容

在正四面体ABCD中,点E为BC的中点,点F为AD的中点,则异面直线AE与CF所成角的余弦为(  )
A、
1
3
B、
1
2
C、
2
3
D、
6
3
考点:异面直线及其所成的角
专题:综合题,空间角
分析:连接ED,取ED的中点M,连接CM、FM,则FM∥AE,且FM=
1
2
AE,所以异面直线AE与CF所成的角即为∠CFM或其补角,然后在△MFC中,借助余弦定理解出所求的角.
解答: 解:如图所示:设正四面体ABCD的棱长为a,
连接ED,取ED的中点M,连接CM、FM,则FM∥AE,且FM=
1
2
AE,
∴异面直线AE与CF所成的角即为∠CFM或其补角,
∵AE=CF=
3
2
a,
∴FM=
3
4
a
在Rt△MEC中,EC=
1
2
a,EM=
3
4
a,
∴MC=
7
4
a
∴cos∠CFM=
CF2+FM2-MC2
2×CF×FM
=
2
3

故选:C.
点评:本题主要考查了异面直线所成的角,空间中的线面关系,解三角形等基础知识,考查空间想象能力和思维能力.求异面直线所成的角,一般有两种方法,法一几何法,即利用“作、证、求”求得角;法二向量法,即利用向量的数量积公式求向量的夹角的余弦值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网