题目内容
17.直线l 交椭圆$\frac{x^2}{8}+\frac{y^2}{4}$=1于M、N两点,椭圆的上顶点为B点,若△BMN的重心恰好落在椭圆的右焦点上,则直线l的方程是( )| A. | 2x-3y-9=0 | B. | 3x-2y-11=0 | C. | 3x+2y-7=0 | D. | x-y-5=0 |
分析 设M(x1,y1)、N(x2,y2),MN的中点为G,MN的方程为y=kx+b,结合题意可得G的坐标,再由A、B在椭圆上,利用“点差法”求得直线l的斜率,再由直线方程的点斜式得答案.
解答 解:设M(x1,y1)、N(x2,y2),MN的中点为G,MN的方程为y=kx+b,
而B(0,2),又△BMN的重心恰好落在椭圆的右焦点(2,0)上,
由重心坐标公式可得$\frac{0+{x}_{1}+{x}_{2}}{3}=2,\frac{2+{y}_{1}+{y}_{2}}{3}=0$,
故x1+x2=6,y1+y2=-2,则MN的中点G为(3,-1),
又M、N在椭圆上,$\left\{\begin{array}{l}{{{x}_{1}}^{2}+2{{y}_{1}}^{2}=8①}\\{{{x}_{2}}^{2}+2{{y}_{2}}^{2}=8②}\end{array}\right.$,
①-②,可得(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0,
又由x1+x2=6,y1+y2=-2,
可得k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=\frac{3}{2}$,
又由直线MN过点G(3,-1),则直线l的方程是y+1=$\frac{3}{2}(x-3)$,整理得:3x-2y-11=0.
故选:B.
点评 本题主要考查了直线与椭圆相交的位置关系、三角形的重心坐标公式、属于中档题.
练习册系列答案
相关题目
7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.
| x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| Asin(ωx+φ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
(Ⅱ)将f(x)的图象向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量$\overrightarrow{NM}$与$\overrightarrow{ON}$夹角θ的大小.
2.已知定义在R上的函数f(x)的导函数为f′(x),满足f′(x)<f(x),f(2)=-2,f(1+x)=-f(1-x),则不等式f(x)<2ex的解集为( )
| A. | (-2,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | (4,+∞) |