题目内容

已知圆的方程为且与圆相切.
(1)求直线的方程;
(2)设圆轴交于两点,M是圆上异于的任意一点,过点且与轴垂直的直线为,直线交直线于点P’,直线交直线于点Q’
求证:以P’Q’为直径的圆总过定点,并求出定点坐标.
(1) (2)定点坐标为
(1)∵直线过点,且与圆相切,
设直线的方程为,即, …………………………2分
则圆心到直线的距离为,解得
∴直线的方程为,即. …… …………………4分
(2)对于圆方程,令,得,即.又直线过点且与轴垂直,∴直线方程为,设,则直线方程为
解方程组,得同理可得, ……………… 8分
∴以为直径的圆的方程为
,∴整理得,……………………… 10分
若圆经过定点,只需令,从而有,解得
∴圆总经过定点坐标为. ……………………………………………12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网