题目内容
5.已知函数f(x)=xlnx.(1)求函数f(x)的单调区间;
(2)求函数f(x)在点(1,0)处的切线方程.
分析 (1)求出导函数,利用导函数求单调区间即可;
(2)根据导函数的意义求解即可.
解答 解:(1)f'(x)=lnx+1>0,
解得x>$\frac{1}{e}$,
由f'(x)<0解得0<x<$\frac{1}{e}$,
f(x)的增区间为($\frac{1}{e}$,+∞),减区间(0,$\frac{1}{e}$),
(2)f'(1)=1.
所以切线方程为y-0=x-1.
∴y=x-1.
点评 考查了导函数的意义和应用,属于常规题型,应熟练掌握.
练习册系列答案
相关题目
16.对于回归方程$\widehat{y}$=4.75x+257,当x=28时,y的估计值为( )
| A. | 390 | B. | 400 | C. | 420 | D. | 440 |
13.某市甲、乙两校高二级学生分别有1100人和1000人,为了解两校全体高二级学生期 末统考的数学成绩情况,采用分层抽样方法从这两所学校共抽取105名高二学生的数学 成绩,并得到成绩频数分布表如下,规定考试成绩在[120,150]为优秀.
甲校:
乙校:
(1)求表中x与y的值;
(2)由以上统计数据完成下面2×2列联表,问是否有99%的把握认为学生数学成绩优秀与所在学校有关?
(3)若以样本的频率作为概率,现从乙校总体中任取3人(每次抽取看作是独立重复的),求优秀学生人数ξ的分布列和数学期望.
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
甲校:
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
| 频数 | 2 | 3 | 10 | 15 | 15 | x | 3 | 1 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
| 频数 | 1 | 2 | 9 | 8 | 10 | 10 | y | 3 |
(2)由以上统计数据完成下面2×2列联表,问是否有99%的把握认为学生数学成绩优秀与所在学校有关?
(3)若以样本的频率作为概率,现从乙校总体中任取3人(每次抽取看作是独立重复的),求优秀学生人数ξ的分布列和数学期望.
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
17.经过点A(-1,4),且斜率为-1的直线方程是( )
| A. | x+y+3=0 | B. | x-y+3=0 | C. | x+y-3=0 | D. | x+y-5=0 |
15.下列各图形中,不可能是某函数y=f(x)的图象的是( )
| A. | B. | C. | D. | y |