题目内容
正实数x1,x2及函数f(x)满足4x=
,且f(x1)+f(x2)=1,则f(x1+x2)的最小值=______.
| 1+f(x) |
| 1-f(x) |
∵4x=
,∴f(x)=
,∵f(x1)+f(x2)=1,
∴
+
=1,通分并化为整式得
4(x1+x2)-3=4x1+4x2≥2
,解得
≥3,
∴4(x1+x2)≥9,
f(x1+x2)=
=1-
≥1-
=
,故答案为
.
| 1+f(x) |
| 1-f(x) |
| 4x-1 |
| 4x+1 |
∴
| 4x1-1 |
| 4x1+1 |
| 4x2-1 |
| 4x2+1 |
4(x1+x2)-3=4x1+4x2≥2
| 4 (x1+x2) |
| 4 (x1+x2) |
∴4(x1+x2)≥9,
f(x1+x2)=
| 4x1+x2-1 |
| 4x1+x2+1 |
| 2 |
| 4x1+x2+1 |
| 2 |
| 9+1 |
| 4 |
| 5 |
| 4 |
| 5 |
练习册系列答案
相关题目