题目内容
函数f(x)=
的反函数f-1(x)=
.
..
|
|
|
分析:由f(x)=
,知当x≥0时,y=-2x+1,f-1(x)=
,x≤1.当x<0时,y=x2+1,f-1(x)=-
,x>1.由此能求出f-1(x).
|
| 1-x |
| 2 |
| x-1 |
解答:解:∵f(x)=
,
∴当x≥0时,y=-2x+1,
解得x=
,x,y互换,得y=
.
∵x≥0,∴y=-2x+1≤1,
∴f-1(x)=
,x≤1.
当x<0时,y=x2+1,
解得x=-
,x,y互换,得y=-
,
∵x<0,∴y=x2+1>1,
∴f-1(x)=-
,x>1.
综上所述,f-1(x)=
.
故答案为:
.
|
∴当x≥0时,y=-2x+1,
解得x=
| 1-y |
| 2 |
| 1-x |
| 2 |
∵x≥0,∴y=-2x+1≤1,
∴f-1(x)=
| 1-x |
| 2 |
当x<0时,y=x2+1,
解得x=-
| y-1 |
| x-1 |
∵x<0,∴y=x2+1>1,
∴f-1(x)=-
| x-1 |
综上所述,f-1(x)=
|
故答案为:
|
点评:本题考查反函数的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
设函数f(x)=
,则满足f(x)=4的x的值是( )
|
| A、2 | B、16 |
| C、2或16 | D、-2或16 |