题目内容
8.设全集U,对集合A,定义函数fA(x)=$\left\{\begin{array}{l}{1,x∈A}\\{-1,x∈{∁}_{U}A}\end{array}\right.$,那么对于集合A,B下列说法不正确的是( )①?x∈U,都有fA(x)=-f${\;}_{{∁}_{U}A}$(x);
②若A⊆B,则?x∈U,都有fA(x)≥fB(x);
③?x∈U,都有fA∩B(x)≤fA(x)•fB(x);
④?x∈U,都有fA∩B(x)+fA∪B(x)=fA(x)+fB(x).
| A. | ① | B. | ② | C. | ③ | D. | ④ |
分析 根据题中特征函数的定义,利用集合的交集、并集和补集运算法则,对①②③④各项中的运算加以验证,由此得到本题答案.
解答 解:对于①,∵f∁UA(x)=$\left\{\begin{array}{l}{1,x∈{∁}_{U}A}\\{-1.x∈A}\end{array}\right.$,
结合fA(x)的表达式,可得f∁UA(x)=-fA(x),故①正确;
对于②∵fA(x)=$\left\{\begin{array}{l}{1,x∈A}\\{-1,x∈{∁}_{U}A}\end{array}\right.$,那么fB(x)=$\left\{\begin{array}{l}{1,x∈B}\\{-1,x∈{∁}_{U}B}\end{array}\right.$,
而CUA中可能有B的元素,但CUB中不可能有A的元素
∴fA(x)≤fB(x),
即对于任意x∈U,都有fA(x)≤fB(x)故②不正确;
对于③,fA∩B(x)=$\left\{\begin{array}{l}{1,x∈A∩B}\\{-1,x∈{∁}_{U}(A∩B)}\end{array}\right.$=$\left\{\begin{array}{l}{1,x∈A}\\{-1,x∈{∁}_{U}A}\end{array}\right.$•$\left\{\begin{array}{l}{1,x∈B}\\{-1,x∈{∁}_{U}B}\end{array}\right.$≤fA(x)•fB(x),故③正确;
对于D,fA∪B(x)=$\left\{\begin{array}{l}{1,x∈A∪B}\\{-1,x∈{∁}_{U}(A∪B)}\end{array}\right.$,
∴fA∩B(x)+fA∪B(x)=$\left\{\begin{array}{l}{1,x∈A∩B}\\{-1,x∈{∁}_{U}(A∩B)}\end{array}\right.$+$\left\{\begin{array}{l}{1,x∈A∪B}\\{-1,x∈{∁}_{U}(A∪B)}\end{array}\right.$=$\left\{\begin{array}{l}{1,x∈A}\\{-1,x∈{∁}_{U}A}\end{array}\right.$+$\left\{\begin{array}{l}{1,x∈B}\\{-1,x∈{∁}_{U}B}\end{array}\right.$=f(A)+f(B),
由此可得④正确.
故选:B
点评 本题给出特征函数的定义,判断几个命题的真假性,着重考查了集合的运算性质和函数对应法则的理解等知识,属于中档题.
| A. | $\frac{x}{2x-1}$ | B. | $\frac{x-2}{1-2x}$ | C. | $\frac{x+1}{2x-1}$ | D. | $\frac{2-x}{1-2x}$ |