题目内容

已知正三棱锥的底面边长为6,高为4,则斜高为
 
考点:棱锥的结构特征
专题:空间位置关系与距离
分析:由已知条件求出底面外接圆半径r=2
3
,侧棱l=2
7
,再由斜高,侧棱,底边一半构成直角三角形,能求出斜高.
解答: 解:∵正三棱锥底面边长为6,∴底面外接圆半径r=2
3

侧棱,高,底面外接圆半径构成直角三角形,
∴侧棱l=
42+(2
3
)2
=2
7

斜高,侧棱,底边一半构成直角三角形,
设斜高为h,则2
7
=
h2+32

∴斜高h=
19

故答案为:
19
点评:本题考查正三棱锥的斜高的求法,是中档题,解题时要认真审题,注意勾股定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网