题目内容

9.y=sin(ωx+φ)(ω>0)与y=a函数图象相交于相邻三点,从左到右为P、Q、R,若PQ=3QR,则a的值为(  )
A.±$\frac{1}{2}$B.±$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{3}}{2}$D.±1

分析 根据题意得出点Q、P的横坐标的差等于函数的周期,点R、Q的连线段的垂直平分线是函数图象的一条对称轴.由此设出P、R、Q三点的坐标,建立方程组解出其中一点的横坐标值,即可求出a的值.

解答 解:设P(x1,a),R(x2,a),Q(x3,a),
根据P、R、R为相邻三点,从左到右为P、R、R,且PR=3RQ,
如图所示;
则$\left\{\begin{array}{l}{{x}_{3}{-x}_{1}=\frac{2π}{ω}}\\{\frac{1}{2}{(x}_{2}{+x}_{3})•ω+φ=\frac{π}{2}+kπ}\end{array}\right.$,(k∈Z)…①
由PR=3RQ,得x2-x1=3(x3-x2),…②
由①②联立,解得x2=$\frac{π}{4ω}$-$\frac{φ}{ω}$+$\frac{kπ}{ω}$,(k∈Z)
因此,a=f(x2)=sin(ωx2+φ)=sin($\frac{π}{4}$+kπ)=±$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查了三角函数的图象与性质的应用问题,也考查了数形结合的解题方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网