题目内容
已知向量
=(1, 2),
=(-2, m),
=
+(t2+1)
,
=-k
+
, m∈R,k,t为正实数,
(1)若
∥
,求m的值;
(2)若
⊥
,求m的值;
(3)当m=1时,若
⊥
,求k的最小值.
| a |
| b |
| x |
| a |
| b |
| y |
| a |
| 1 |
| t |
| b |
(1)若
| a |
| b |
(2)若
| a |
| b |
(3)当m=1时,若
| x |
| y |
分析:(1)(2)由平行和垂直的条件分别可得关于m的方程,解之可得;(3)把m=1代入,分别可得向量
,
的坐标,由垂直可得k,x的关系式,由基本不等式可得答案.
| x |
| y |
解答:解:(1)由
∥
可得1×m-2×(-2)=0,解之可得m=-4;
(2)由
⊥
可得1×(-2)+2×m=0,解之可得m=1;
(3)当m=1时,
=
+(t2+1)
=(-2t2-1,t2+3),
=-k
+
=(-k-
,-2k+
),
由
⊥
可得(-2t2-1)(-k-
)+(t2+3)(-2k+
)=0,
化简可得k=t+
≥2,当且仅当t=1时取等号,
故k的最小值为:2
| a |
| b |
(2)由
| a |
| b |
(3)当m=1时,
| x |
| a |
| b |
| y |
| a |
| 1 |
| t |
| b |
| 2 |
| t |
| 1 |
| t |
由
| x |
| y |
| 2 |
| t |
| 1 |
| t |
化简可得k=t+
| 1 |
| t |
故k的最小值为:2
点评:本题考查平面向量垂直于平行的判定,涉及基本不等式的应用,属中档题.
练习册系列答案
相关题目