题目内容
18.从5个男生和3个女生中选4人分别担当4个学科的课代表,要求至少有2个女生,则不同的选法种数为35种.分析 由题意至少有2个女生,包括2男2女和1男3女两种情况,分别求出这两种情况下的选法的数量,利用分类计数原理相加即得结果.
解答 解:由题意知本题是一个分类计数原理的应用,
至少有2个女生,包括2男2女和1男3女两种情况.
若4人中有2男2女,则不同的选法共有 C52C32=30种,
若4人中有1男3女,则不同的选法共有C51C33=5种,
根据分类计数原理,所有的不同的选法共有30+5=35种,
故答案为:35.
点评 本题主要考查计数原理的应用,本题解题的关键是对于题目中所要求的至少有2个女生的情况要分类来表示出来,本题是一个基础题.
练习册系列答案
相关题目
6.若$\overrightarrow{O{F}_{1}}$=(2,2),$\overrightarrow{O{F}_{2}}$=(-2,3)分别表示F1,F2,则|F1+F2|=( )
| A. | (0,5) | B. | 25 | C. | 2$\sqrt{2}$ | D. | 5 |
3.已知A为△ABC的最小内角,若向量$\overrightarrow{a}$=(cosA,1),$\overrightarrow{b}$=(2sin(A+$\frac{π}{6}$),1),则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是( )
| A. | [-$\frac{1}{2}$,$\frac{5}{2}$] | B. | (-$\frac{1}{2}$,$\frac{5}{2}$] | C. | [2,$\frac{5}{2}$] | D. | (2,$\frac{5}{2}$] |
10.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点为F,不垂直于x轴且不过F点的直线l与椭圆C交于M,N两点,若∠MFN的外角平分线与直线MN交于点P,则P点的横坐标为( )
| A. | 2$\sqrt{3}$ | B. | $\frac{4}{3}$ | C. | 3 | D. | 4 |