题目内容
在中,,是边上的点,,
则 .
如图,在中,,是边上的高,是边上的一个动点(不与重合),,,垂足分别为.
(1)求证:;
(2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由;
(3)当时,为等腰直角三角形吗?并说明理由.
在中,满足,是边上的一点.
(Ⅰ)若,求向量与向量夹角的正弦值;
(Ⅱ)若,=m (m为正常数) 且是边上的三等分点.,求值;
(Ⅲ)若且求的最小值。
【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则
令=,得,又,则为所求
第二问因为,=m所以,
(1)当时,则=
(2)当时,则=
第三问中,解:设,因为,;
所以即于是得
从而
运用三角函数求解。
(Ⅰ)解:设向量与向量的夹角为,则
令=,得,又,则为所求……………2分
(Ⅱ)解:因为,=m所以,
(1)当时,则=;-2分
(2)当时,则=;--2分
(Ⅲ)解:设,因为,;
从而---2分
==
=…………………………………2分
令,则,则函数,在递减,在上递增,所以从而当时,
在△中,是边上的点,且,则的值为( )
A. B. C. D.