题目内容

4.已知函数f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+cos2x.
(1)试求f(x)的最小正周期和单调递减区间;
(2)已知a,b,c分别为△ABC三个内角A,B,C的对边,若f($\frac{A}{2}$)=1,a=2,试求△ABC面积的最大值.

分析 (1)利用诱导公式,降幂公式化简函数解析式可得f(x)=cos2x+$\frac{1}{2}$,利用周期公式可求最小正周期,根据余弦函数的单调性可求单调递减区间.
(2)由(1)及f($\frac{A}{2}$)=1可求A,利用余弦定理,基本不等式可求bc≤4,进而利用三角形面积公式即可得解面积的最大值.

解答 解:(1)∵$f(x)=\frac{1}{2}sin(2x+\frac{π}{2})+\frac{1+cos2x}{2}$=$\frac{1}{2}cos2x+\frac{1}{2}cos2x+\frac{1}{2}=cos2x+\frac{1}{2}$.
∴T=$\frac{2π}{2}$=π.
∵令$2kπ≤2x≤2kπ+π⇒kπ≤x≤kπ+\frac{π}{2}$,k∈Z,
∴f(x)的单调递减区间为$[kπ,kπ+\frac{π}{2}]$,k∈Z.
(2)∵$f(\frac{A}{2})=1⇒cosA+\frac{1}{2}=1⇒cosA=\frac{1}{2}⇒A=\frac{π}{3}$.
又∵a=2,
∴a2=b2+c2-2bccosA,可得:4=b2+c2-bc≥bc,
∴bc≤4.
∴${S_{△ABC}}=\frac{1}{2}bcsinA$$≤\frac{1}{2}×4×\frac{{\sqrt{3}}}{2}=\sqrt{3}$,当且仅当b=c=2时取等号.

点评 本题主要考查了诱导公式,降幂公式,周期公式,余弦函数的单调性,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网