题目内容

若函数f(x)的导函数是f′(x)=x2-4x+3,则函数g(x)=f(ax)(0<a<1)的单调递减区间是(  )
A、[loga3,0],[1,+∞)
B、(-∞,loga3],[0,+∞)
C、[a3,a]
D、[loga3,1]
考点:利用导数研究函数的单调性,导数的运算
专题:导数的综合应用
分析:先利用复合函数求导原则求导,再令其小于等于0,解不等式即可
解答: 解:∵g(x)=f(ax),
∴g′(x)=f′(ax)axlna,
∵0<a<1,
∴lna<0,ax>0,
当g′(x)=f′(ax)axlna<0,
∴f′(ax)≥0,
∵f′(x)=x2-4x+3=(x-1)(x-3)
∴f′(ax)=(ax-1)(ax-3)≥0,
∴ax≤1,ax≥3,
解得x≥0,或x≤loga3,
故选:B.
点评:本题考查利用导数求函数的单调区间的方法,注意复合函数的导数,同时考查了计算能力,属于中档题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网