题目内容

15.已知P为抛物线y=2x2上的点,若点P到直线l:4x-y-6=0的距离最小,则点P的坐标为(1,2).

分析 设抛物线y=2x2上一点为A(x0,2x02),求出点A(x0,2x02)到直线l:4x-y-6=0的距离,利用配方法,由此能求出抛物线y=2x2上一点到直线l:4x-y-6=0的距离最短的点的坐标.

解答 解:设抛物线y=2x2上一点为P(x0,2x02),
点A(x0,2x02)到直线l:4x-y-6=0的距离d=$\frac{丨4{x}_{0}-2{x}_{0}^{2}-6丨}{\sqrt{{4}^{2}+1}}$=$\frac{1}{\sqrt{17}}$|2(x0-1)2-8|,
∴当x0=1时,即当A(1,2)时,抛物线y=2x2上一点到直线l:4x-y-6=0的距离最短.
故答案为:(1,2).

点评 本题考查抛物线上的点到直线的距离最短的点的坐标的求法,考查学生的计算能力,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网