题目内容

已知实数x,y满足不等式组
x-y≤2
x+y≤4
x≥2
,则z=2x+y的最小值是(  )
A、2B、4C、6D、7
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答: 试题分析:做出可行域,
解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线的截距最小,
此时z最小,
x=2
x-y=2
,解得
x=2
y=0

即A(2,0),此时z=2×2+0=4,
故选:B
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网