题目内容

如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135° 求BC的长.
【答案】分析:由余弦定理求得BD,再由正弦定理求出BC的值.
解答:解:在△ABD中,设BD=x,则BA2=BD2+AD2-2BD•AD•cos∠BDA,
即142=x2+102-2•10x•cos60°,整理得:x2-10x-96=0,
解之:x1=16,x2=-6(舍去).
由正弦定理得:

点评:本题考查正弦定理、余弦定理的应用,一元二次方程的解法,求出BD的值,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网