题目内容

8.已知:f(x)=2$\sqrt{3}$cos2x+2sinxcosx-$\sqrt{3}$.
求:(1)f(x)的最小正周期;
(2)f(x)的单调递增区间;
(3)若f($\frac{α}{2}$-$\frac{π}{6}$)-f($\frac{α}{2}$+$\frac{π}{12}$)=$\sqrt{6}$,且α∈($\frac{π}{2}$,π),求α的值.

分析 (1)利用二倍角公式和和差公式对f(x)进行化简,
(2)结合正弦函数的单调性列出不等式解出;
(3)代入f(x)的解析式得出sinα-cosα=$\frac{\sqrt{6}}{2}$,根据α的范围求出α.

解答 解:(1)f(x)=$\sqrt{3}$(2cos2x-1)+2sinxcosx=$\sqrt{3}$cos2x+sin2x=2sin(2x+$\frac{π}{3}$).
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,解得-$\frac{5π}{12}$+kπ≤x≤$\frac{π}{12}$+kπ.∴f(x)的单调递增区间是[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z.
(3)∵f($\frac{α}{2}$-$\frac{π}{6}$)-f($\frac{α}{2}$+$\frac{π}{12}$)=$\sqrt{6}$,∴2sinα-2cosα=$\sqrt{6}$.∴sinα-cosα=$\frac{\sqrt{6}}{2}$.∴sin2α=-$\frac{1}{2}$.
∵α∈($\frac{π}{2}$,π),∴2α∈(π,2π),∴2α=$\frac{7π}{6}$,或2α=$\frac{11π}{6}$.∴α=$\frac{7π}{12}$,或α=$\frac{11π}{12}$.

点评 本题考查了三角函数的恒等变换及性质,三角函数求值,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网