ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬ÒÔM£¨1£¬0£©ÎªÔ²ÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}-1=0$ÏàÇУ®£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªµãN£¨3£¬2£©£¬¹ýµãMÈÎ×÷Ö±ÏßlÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÉèÖ±ÏßAN£¬BNµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇëÎÊ k1+k2ÊÇ·ñΪ¶¨Öµ£¿Èç¹ûÊÇÇó³ö¸ÃÖµ£¬Èç¹û²»ÊÇ˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÀëÐÄÂʹØÏµ¼°µãµ½Ö±ÏߵľàÀ빫ʽÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©µ±Ð±Âʲ»´æÔÚʱ£¬ÇóµÃAºÍBµÄ×ø±ê£¬ÇóµÃk1£¬k2£¬¼´¿ÉÇóµÃk1+k2µÄÖµ£¬µ±Ð±Âʲ»´æÔÚʱ£¬ÉèÖ±Ïß l£ºy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½¼´¿ÉÇóµÃk1+k2ÊÇ·ñΪ¶¨Öµ£®
½â´ð ½â£º£¨1£©ÍÖÔ²ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$£¬Ôòa2=$\frac{3}{2}$c2£¬
Ô²£¨x-1£©2+y2=b2ÓëÖ±Ïß$x-y+\sqrt{2}-1=0$ÏàÇУ¬
ÔòÔ²ÐÄ£¨1£¬0£©µ½Ö±Ïß$x-y+\sqrt{2}-1=0$µÄ¾àÀëb=d=$\frac{Ø1-0+\sqrt{2}-1Ø}{\sqrt{1+£¨-1£©^{2}}}$=1£¬
¼´b=1£¬a2=3£®
¡àÍÖÔ²CµÄ±ê×¼·½³Ì$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
£¨2£©¢Ùµ±Ö±ÏßбÂʲ»´æÔÚʱ£¬ÓÉ $\left\{\begin{array}{l}{x=1}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬½âµÃx=1£¬y=¡À$\frac{\sqrt{6}}{3}$£¬
²»·ÁÉè A£¨1£¬$\frac{\sqrt{6}}{3}$£©£¬B£¨1£¬-$\frac{\sqrt{6}}{3}$ £©£¬
ÓÉk1+k2=$\frac{\frac{\sqrt{6}}{3}-2}{1-3}$+$\frac{-\frac{\sqrt{6}}{3}-2}{1-3}$=2£¬
¢Úµ±Ö±ÏßµÄбÂÊ´æÔÚʱ£¬ÉèµãA£¨x1£¬y1£©£®B£¨x2£¬y2£©£¬ÉèÖ±Ïß l£ºy=k£¨x-1£©£¬
ÁªÁ¢ÍÖÔ²ÕûÀíµÃ£º£¨3k2+1£©x2-6k2x+3k2-3=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=$\frac{6{k}^{2}}{3{k}^{2}+1}$£¬x1•x2=$\frac{3{k}^{2}-3}{3{k}^{2}+1}$£¬
k1+k2=$\frac{2-{y}_{1}}{3-{x}_{1}}$+$\frac{2-{y}_{2}}{3-{x}_{2}}$=$\frac{[2-k£¨{x}_{1}-1£©]£¨3-{x}_{2}£©+[2-k£¨{x}_{2}-1£©]£¨3-{x}_{1}£©}{{x}_{1}{x}_{2}-3£¨{x}_{1}+{x}_{2}£©+9}$=$\frac{2k{x}_{1}{x}_{2}-£¨4k+2£©£¨{x}_{1}+{x}_{2}£©+6k+12}{{x}_{1}{x}_{2}-3£¨{x}_{1}+{x}_{2}£©+9}$£¬
=$\frac{2£¨12{k}^{2}+6£©}{12{k}^{2}+6}$=2£¬
¡àk1+k2ÊÇ·ñΪ¶¨Öµ2£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬Î¤´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 2$\sqrt{3}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | 3 |