题目内容
若函数f(x)=ln(x2+ax+1)的值域为R则实数a的取值范围是( )
| A、(-2,2) |
| B、(-∞,-2)∪(2,+∞) |
| C、(-∞,-2]∪[2,+∞) |
| D、[-2,2] |
考点:对数函数的图像与性质
专题:函数的性质及应用
分析:可以令g(x)=x2+ax+1,由题意函数的值域为R,则可得g(x)可以取所有的正数可得,△≥0,解不等式即可求解;
解答:
解:∵函数f(x)=ln(x2+ax+1)的值域为R,
∴真数部分g(x)=x2+ax+1可以取所有的正数,
∴△≥0,可得a2-4≥0,
解得a≥2或a≤-2,
实数a的取值范围是a∈(-∞,-2]∪[2,+∞);
故选:C
∴真数部分g(x)=x2+ax+1可以取所有的正数,
∴△≥0,可得a2-4≥0,
解得a≥2或a≤-2,
实数a的取值范围是a∈(-∞,-2]∪[2,+∞);
故选:C
点评:本题主要考查了由二次函数与对数函数复合的复合函数,解题的关键是要熟悉对数函数的性质,解题时容易误认为△<0,要注意区别与函数的定义域为R的限制条件;
练习册系列答案
相关题目
设函数f(x)=|sin(2x+
)|,则下列关于函数f(x)的说法中正确的是( )
| π |
| 3 |
| A、f(x)是偶函数 | ||||
| B、f(x)最小正周期为π | ||||
C、f(x)图象关于点(-
| ||||
D、f(x)在区间[
|
下列函数中,在(0,+∞)上为减函数的是( )
A、y=
| ||
| B、y=(1-x)ex | ||
| C、y=x-ln(1+x) | ||
| D、y=x3-x |
在△ABC中,则“A=
”是“cosA=
”的( )
| π |
| 6 |
| ||
| 2 |
| A、充分必要条件 |
| B、充分不必要条件 |
| C、必要不充分条件 |
| D、既不充分也不必要条件 |
设全集U=R,集合A={-2,-1},B={x|(x+1)(x-2)<0},则A∩∁UB=( )
| A、{-2,-1} |
| B、{-2,1} |
| C、{-1,1} |
| D、{-2,-1,1} |
将函数f(x)=2sin(
+
)的图象向左平移
个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为( )
| x |
| 3 |
| π |
| 6 |
| π |
| 4 |
A、g(x)=2sin(
| ||||
B、g(x)=2sin(
| ||||
C、g(x)=2sin(
| ||||
D、g(x)=2sin(
|
已知x为第四象限角,则
-
=( )
|
|
| A、-2tanx |
| B、2tanx |
| C、2tanx或-2tanx |
| D、0 |