题目内容

1.已知命题P:?α∈R,sinα+cosα≤$\sqrt{2}$,则(  )
A.¬p:?α∈R,sinα+cosα≥$\sqrt{2}$B.¬p:?α∈R,sinα+cosα≥$\sqrt{2}$
C.¬p:?α∈R,sinα+cosα>$\sqrt{2}$D.¬p:?α∈R,sinα+cosα>$\sqrt{2}$

分析 利用全称命题的否定是特称命题,去判断.

解答 解:因为命题是全称命题,根据全称命题的否定是特称命题,
所以命题的否定:¬p:?α∈R,sinα+cosα>$\sqrt{2}$.
故选:C

点评 本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网