题目内容
3.已知ABCD-A1B1C1D1是一个棱长为1的正方体,O1是底面A1B1C1D1的中心,M是棱BB1上的点,且S△DBM:S${\;}_{△{O}_{1}{B}_{1}M}$=2:3,则四面体O1ADM的体积为$\frac{1}{16}$.分析 利用S△DBM:S${\;}_{△{O}_{1}{B}_{1}M}$=2:3,求出BM,再求出${S}_{△{O}_{1}DM}$,即可求出四面体O1ADM的体积.
解答 解:设BM=x,BD=$\sqrt{2}$,O1B=$\frac{\sqrt{2}}{2}$,
∵S△DBM:S${\;}_{△{O}_{1}{B}_{1}M}$=2:3,
∴$\frac{1}{2}•\sqrt{2}•x$:$\frac{1}{2}•\frac{\sqrt{2}}{2}•(1-x)$=2:3,
∴x=$\frac{1}{4}$,
∴${S}_{△{O}_{1}DM}$=$\frac{1}{2}×\sqrt{2}×1$-$\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{3}{4}$-$\frac{1}{2}×\sqrt{2}×\frac{1}{4}$=$\frac{3}{16}\sqrt{2}$
∴四面体O1ADM的体积为${V}_{A-{O}_{1}DM}$=$\frac{1}{3}×\frac{3}{16}\sqrt{2}×\frac{\sqrt{2}}{2}$=$\frac{1}{16}$.
故答案为:$\frac{1}{16}$.
点评 本题考查求四面体O1ADM的体积,考查三角形面积的计算,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
13.设等差数列{an}的公差是d,其前项和是Sn,若a1=d=1,则$\frac{{S}_{n}+8}{{a}_{n}}$的最小值是( )
| A. | $\frac{9}{2}$ | B. | $\frac{7}{2}$ | C. | 2$\sqrt{2}$+$\frac{1}{2}$ | D. | 2$\sqrt{2}$-$\frac{1}{2}$ |
8.已知A(1,3)、B(4,-1)两点,则AB的距离=( )
| A. | 5 | B. | 6 | C. | 7 | D. | 4 |