题目内容

18.已知p:|1-$\frac{x-1}{3}$|≥2,q:x2-2x+1-m2≥0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.

分析 分别求出p,q为真时的x的范围,根据集合的包含关系得到关于m的不等式组,解出即可.

解答 解:由p:|1-$\frac{x-1}{3}$|≥2,解得:x≤-2或x≥10,
故¬p:-2<x<10,记为集合A={x|-2<x<10},
由q:x2-2x+1-m2≥0(m>0),
 解得:x≤1-m或x≥1+m,
故¬q:1-m<x<1+m,
记为集合B={x|1-m<x<1+m},
∵¬p是¬q的必要不充分条件,
∴B?A,
∴$\left\{\begin{array}{l}{1-m≥-2}\\{1+m≤10}\\{m>0}\end{array}\right.$,解得:0<m≤3,
故实数m的取值范围为(0,3].

点评 本题考查了充分必要条件,考查集合的包含关系以及不等式问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网