题目内容

(2012•江西)椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为(  )
分析:由题意可得,|AF1|=a-c,|F1F2|=2c,|F1B|=a+c,由|AF1|,|F1F2|,|F1B|成等比数列可得到e2=
c2
a2
=
1
5
,从而得到答案.
解答:解:设该椭圆的半焦距为c,由题意可得,|AF1|=a-c,|F1F2|=2c,|F1B|=a+c,
∵|AF1|,|F1F2|,|F1B|成等比数列,
∴(2c)2=(a-c)(a+c),
c2
a2
=
1
5
,即e2=
1
5

∴e=
5
5
,即此椭圆的离心率为
5
5

故选B.
点评:本题考查椭圆的简单性质,考查等比数列的性质,用a,c分别表示出|AF1|,|F1F2|,|F1B|是关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网