题目内容
5.动圆M与圆C1:(x+1)2+y2=$\frac{1}{8}$外切,同时与圆C2:x2-2x+y2-$\frac{41}{8}$=0内切,不垂直于x轴的直线l交动圆圆心M的轨迹C于A,B两点(1)求点M的轨迹C的方程
(2)若C与x轴正半轴交于A2,以AB为直径的圆过点A2,试问直线l是否过定点.若是,请求出该定点坐标;若不是,请说明理由.
分析 (1)设动圆M的半径为r,推导出点M的轨迹是以C1(-1,0),C2(1,0)为焦点的椭圆,由此能求出点M的轨迹方程.
(2)设直线l方程为y=kx+m,与椭圆联立,得(1+2k2)x2+4mkx+2m2-2=0,由此利用根的判别式、韦达定理、圆的直径、向量垂直,结合题意能求出直线l过定点($\frac{\sqrt{2}}{3}$,0).
解答 解:(1)设动圆M的半径为r,圆C2:${(x-1)^2}+{y^2}=\frac{49}{8}$.(1分)
由题意得|MC1|=$\frac{{\sqrt{2}}}{4}$+r,|MC2|=$\frac{{7\sqrt{2}}}{4}$-r,(2分)
∴$|M{C_1}|+|M{C_2}|=2\sqrt{2}>|{C_1}{C_2}|=2$.
∴点M的轨迹是以C1(-1,0),C2(1,0)为焦点的椭圆,
且长半轴为a=$2\sqrt{2}$,半焦距2c=2,从而短半轴为b=$\sqrt{{a^2}-{c^2}}$=1,
于是点M的轨迹方程为$\frac{x^2}{2}+{y^2}=1$.(4分)
(2)设直线l方程为y=kx+m,A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(1+2k2)x2+4mkx+2m2-2=0,
∴△=(4km)2-4(1+2k2)(2m2-2)>0,
${x}_{1}+{x}_{2}=-\frac{4mk}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{1+2{k}^{2}}$. (6分)
∵y1=kx1+m,y2=kx2+m,
∴${y_1}•{y_2}=(k{x_1}+m)(k{x_2}+m)={k^2}{x_1}{x_2}+km({x_1}+{x_2})+{m^2}$
=${k^2}\frac{{2{m^2}-2}}{{1+2{k^2}}}+mk\frac{-4mk}{{1+2{k^2}}}+{m^2}$=$\frac{{{m^2}-2{k^2}}}{{1+2{k^2}}}$,(7分)
∵点A2($\sqrt{2}$,0)在以AB为直径的圆周上,
∴AA2⊥BA2,即$\overrightarrow{A{A_2}}•\overrightarrow{B{A_2}}=0$.(8分)
又$\overrightarrow{A{A}_{2}}$=($\sqrt{2}-{x}_{1}$,-y1),$\overrightarrow{B{A}_{2}}$=($\sqrt{2}-{x}_{2}$,-y2),
∴($\sqrt{2}-{x}_{1}$,-y1)•($\sqrt{2}-{x}_{2}$,-y2)=0,
即$(\sqrt{2}-{x_1})•(\sqrt{2}-{x_2})+{y_1}•{y_2}=2-\sqrt{2}({x_1}+{x_2})+{x_1}{x_2}+{y_1}{y_2}=0$,
代入得 $2+\sqrt{2}•\frac{4mk}{{1+2{k^2}}}+\frac{{2{m^2}-2}}{{1+2{k^2}}}+\frac{{{m^2}-2{k^2}}}{{1+2{k^2}}}=0$,
化简得$2{k^2}+4\sqrt{2}mk+3{m^2}=0$,即$(\sqrt{2}k+m)(\sqrt{2}k+3m)=0$,
∴$\sqrt{2}k+m=0$或$\sqrt{2}k+3m=0$.(9分)
当$-\sqrt{2}k=m$时,$l:y=k(x-\sqrt{2})$过定点($\sqrt{2}$,0),此为椭圆右顶点,不满足;
当$-\sqrt{2}k=3m$时,$l:y=kx-\frac{{\sqrt{2}}}{3}k=k(x-\frac{{\sqrt{2}}}{3})$,过定点($\frac{\sqrt{2}}{3}$,0).
∴直线l过定点($\frac{\sqrt{2}}{3}$,0).…(10分)
点评 本题考查点的轨迹方程的求法,考查直线是否过定点的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、圆的直径、向量垂直的性质的合理运用.
| A. | (-∞,0) | B. | $({-∞,\frac{1}{4}})$ | C. | $({\frac{1}{2},+∞})$ | D. | $({\frac{1}{4},+∞})$ |
| A. | [$\frac{\sqrt{3}}{2}$,1) | B. | [$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$] | C. | [$\frac{\sqrt{2}}{2}$,1) | D. | [$\frac{1}{2}$,1) |