题目内容
15.在平行四边形ABCD中,AB∥CD,已知AB=5,AD=3,cos∠DAB=$\frac{2}{5}$,E为DC中点,则$\overrightarrow{AC}•\overrightarrow{BE}$=$-\frac{1}{2}$.分析 由题意画出图形,把$\overrightarrow{AC}、\overrightarrow{BE}$用$\overrightarrow{AB}、\overrightarrow{AD}$表示,展开数量积求解.
解答 解:如图,∵四边形ABCD为平行四边形,AB∥CD,AB=5,AD=3,cos∠DAB=$\frac{2}{5}$,E为DC中点,![]()
∴$\overrightarrow{AC}•\overrightarrow{BE}$=($\overrightarrow{AB}+\overrightarrow{BC}$)•($\overrightarrow{BC}+\overrightarrow{CE}$)
=($\overrightarrow{AB}+\overrightarrow{AD}$)•($\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$)
=$|\overrightarrow{AD}{|}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AD}-\frac{1}{2}|\overrightarrow{AB}{|}^{2}$
=9+$\frac{1}{2}×5×3×\frac{2}{5}-\frac{1}{2}×{5}^{2}$=$-\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.
点评 本题考查平面向量的数量积运算,考查平面向量基本定理的应用,是中档题.
练习册系列答案
相关题目
6.我国古代数学名著《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2-$\frac{1}{2-\frac{1}{2-…}}$中“…”即代表无限次重复,但原式是个定制x,这可以通过方程2-$\frac{1}{x}$=x解得x=1,类比之,$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=( )
| A. | $\sqrt{2}$ | B. | -1或2 | C. | 2 | D. | 4 |
10.若函数f(x)=2sin(ωx+φ)对任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).若函数g(x)=cos(ωx+φ)-1,则g($\frac{π}{6}$)的值是( )
| A. | -2 | B. | -1 | C. | -$\frac{1}{2}$ | D. | 0 |
20.已知扇形OAB的半径OA=OB=1,$\widehat{AB}$长为$\frac{π}{3}$,则在该扇形内任取一点P,点P在△OAB内的概率为( ) )
| A. | $\frac{3}{π}$ | B. | $\frac{\sqrt{3}}{π}$ | C. | $\frac{3\sqrt{3}}{2π}$ | D. | $\frac{3\sqrt{2}}{2π}$ |
4.在△ABC中,a,b,c是内角A,B,C所对应边,a=2,b=$\sqrt{2}$,A=$\frac{π}{4}$,则角B=( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{6}$或$\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
5.某校高三毕业汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,要求A、B两个节目要相邻,且都不排在第4号位置,则节目单上不同的排序方式有( )
| A. | 192种 | B. | 144种 | C. | 96种 | D. | 72种 |