题目内容

已知函数f(x)=
ax+b
x
ex(a>0),g(x)=[a(x-1)]ex-f(x).
(1)当a=1时?x∈(0,+∞)都有g(x)≥1成立,求b的最大值;  
(2)当?x>1,使g(x)+g′(x)=0成立,求
b
a
的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)利用分离变量法,由已知变量的取值范围求出参数的取值范围,通过构造新的函数,等价转化;
(2)存在x>1,使g(x)+g′(x)=0成立,等价于存在x>1,2ax3-3ax2-2bx+b=0成立,设u(x)=
2x3-3x2
2x-1
(x>1),求出u(x)的最小值即可.
解答: 解:(1)当a=1时,g(x)=(x-
b
x
-2)ex
∵g(x)≥1在x∈(0,+∞)上恒成立,
∴b≤x2-2x-
x
ex
在x∈(0,+∞)上恒成立.
记h(x)=x2-2x-
x
ex
,(x>0),则h′(x)=
(x-1)(2ex+1)
ex

当0<x<1时,h′(x)<0,h(x)在(0,1)上是减函数;
当x>1时,h′(x)>0,h(x)在(1,+∞)上是增函数;
∴h(x)min=h(1)=-1-e-1
∴b的最大值为-1-e-1
②∵g(x)=(ax-
b
x
-2a)ex
∴g′(x)=(
b
x2
+ax-
b
x
-a)ex
∴由g(x)+g′(x)=0,整理得2ax3-3ax2-2bx+b=0.
存在x>1,使g(x)+g′(x)=0成立,
等价于存在x>1,2ax3-3ax2-2bx+b=0成立,
∵a>0,∴
b
a
=
2x3-3x2
2x-1

设u(x)=
2x3-3x2
2x-1
(x>1),则u′(x)=
8x[(x-
3
4
)2+
3
16
]
(2x-1)2

∵x>1,∴u′(x)>0恒成立,∴u(x)在(1,+∞)上是增函数,∴u(x)>u(1)=-1,
b
a
>-1,即
b
a
的取值范围为(-1,+∞).
点评:本题考查了利用导数的性质,求函数的极值,构造函数,利用化归,等价转化思想,解决恒成立问题和存在性的问题,这是常考的题型,也是高考的热点.平时要多多留意.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网