题目内容
已知集合A={(x,y)|x+y-1=0},B={(x,y)|y=x2-1},则A∩B= .
{(-2,3),(1,0)}解析:由于集合的元素是曲线上的点.
因此A∩B中的元素是两个曲线的交点,
故解方程组
得
或![]()
所以A∩B={(-2,3),(1,0)}.
练习册系列答案
相关题目
题目内容
已知集合A={(x,y)|x+y-1=0},B={(x,y)|y=x2-1},则A∩B= .
{(-2,3),(1,0)}解析:由于集合的元素是曲线上的点.
因此A∩B中的元素是两个曲线的交点,
故解方程组
得
或![]()
所以A∩B={(-2,3),(1,0)}.