题目内容

若cosα-sinα=
1
4
,则sin2α=
 
考点:二倍角的正弦,三角函数的化简求值
专题:三角函数的求值
分析:利用已知条件两边平方,即可求出结果.
解答: 解:∵cosα-sinα=
1
4

∴(cosα-sinα)2=
1
16

可得1-sin2α=
1
16

∴sin2α=
15
16

故答案为:
15
16
点评:本题考查二倍角的正弦函数,同角三角函数的基本关系式,基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网