题目内容
1.若满足x,y约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x+y的最大值为( )| A. | $\frac{3}{2}$ | B. | 1 | C. | -1 | D. | -3 |
分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$作出可行域如图,
化目标函数z=x+y为y=-x+z,
由图可知,当直线y=-x+z过A时,目标函数有最大值,
由:$\left\{\begin{array}{l}{x-2y=0}\\{x+2y-2=0}\end{array}\right.$,可得A(1,$\frac{1}{2}$),z的最大值为z=1+$\frac{1}{2}$=$\frac{3}{2}$.
故选:A.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
11.已知倾斜角60°为的直线l平分圆:x2+y2+2x+4y-4=0,则直线l的方程为( )
| A. | $\sqrt{3}$x-y+$\sqrt{3}$+2=0 | B. | $\sqrt{3}$x+y+$\sqrt{3}$+2=0 | C. | $\sqrt{3}$x-y+$\sqrt{3}$-2=0 | D. | $\sqrt{3}$x-y-$\sqrt{3}$+2=0 |
9.下列命题中正确的个数是( )
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②有一个面是多边形,其余各面都是三角形的几何体叫棱锥
③若有两个侧面垂直于底面,则该四棱柱为直四棱柱
④圆台所有的轴截面是全等的等腰梯形.
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②有一个面是多边形,其余各面都是三角形的几何体叫棱锥
③若有两个侧面垂直于底面,则该四棱柱为直四棱柱
④圆台所有的轴截面是全等的等腰梯形.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
16.已知函数$y=3sin(ωx+\frac{π}{3})$的最小正周期为π,将函数$y=3sin(ωx+\frac{π}{3})$的图象向右平移$\frac{π}{2}$个单位长度,所得图象对应的函数( )
| A. | 在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递减 | B. | 在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递增 | ||
| C. | 在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递减 | D. | 在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递增 |
6.已知不共线的两个向量$\overrightarrow a\;\;,\;\;\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=3$且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,则$|{\overrightarrow b}|$=( )
| A. | 3 | B. | 4 | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
13.在如图所示的程序框图中,若输入的m=98,n=63,则输出的结果为( )

| A. | 9 | B. | 8 | C. | 7 | D. | 6 |
10.
一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )
| A. | 72+6π | B. | 72+4π | C. | 48+6π | D. | 48+4π |