题目内容

5.已知函数$f(x)=a(\frac{1}{{{a^x}-1}}+\frac{1}{2})$,其中a>1.
(1)判断并证明函数f(x)的奇偶性;
(2)判断并证明函数f(x)的单调性.

分析 (1)根据函数奇偶性的定义进行判断即可.
(2)根据函数单调性的定义和性质进行证明即可.

解答 解:(1)f(x)的定义域为{x|x≠0}关于原点对称,$f(x)=\frac{{a({a^x}+1)}}{{2({{a^x}-1})}}$,
∴$f(-x)=\frac{{a({a^{-x}}+1)}}{{2({a^{-x}}-1)}}=\frac{{a(1+{a^x})}}{{2(1-{a^x})}}=-f(x)$,所以f(x)为奇函数.
(2)任取x1,x2∈R,且x1<x2,则$f({x_1})-f({x_2})=\frac{{a({a^{x_2}}-{a^{x_1}})}}{{({a^{x_1}}-1)({a^{x_2}}-1)}}$,
∵a>1,∴${a^{x_1}}<{a^{x_2}}$,若x∈(0,+∞),${a^{x_1}}-1>0$,${a^{x_2}}-1>0$,
∴f(x1)>f(x2),
∴f(x)在(-∞,0)和(0,+∞)上为减函数.

点评 本题主要考查函数奇偶性和单调性的判断,利用定义法是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网