题目内容
11.在${(\sqrt{2x}-\frac{1}{2x})^{10}}$的展开式中,含x的负整数指数幂的项共有4项.分析 先求出二项式展开式的通项公式,再令x的幂指数等于负整数,求得r的值,即可求得展开式中的含x的负整数指数幂的项的个数.
解答 解:二项式${(\sqrt{2x}-\frac{1}{2x})^{10}}$的展开式的通项公式为 Tr+1=${C}_{10}^{r}$•(-1)r•${(2x)}^{\frac{10-3r}{2}}$,
令 $\frac{10-3r}{2}$为负整数,可得r=4,6,8,10,
故含x的负整数指数幂的项共有4项,
故答案为:4.
点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.
练习册系列答案
相关题目
1.已知A={x∈Z|x2-x+b<0}只有一个子集,则b值范围是( )
| A. | [$\frac{1}{4}$,+∞) | B. | [0,+∞) | C. | ($\frac{1}{4}$,+∞) | D. | 不存在 |
16.某研究性学习小组对某花卉种子的发芽率与昼夜温差之间的关系进行研究.他们分别记录了3月1日至3月5日的昼夜温差及每天30颗种子的发芽数,并得到如下资料:
参考数据$\sum_{i=1}^{5}{x}_{i}{y}_{i}=832$,${\sum_{i=1}^{5}x}_{i}^{2}=615$,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}-b\overline{x}$
(1)请根据3月1日至3月5日的数据,求出y关于x的线性回归方程.据气象预报3月6日的昼夜温差为11℃,请预测3月6日浸泡的30颗种子的发芽数.(结果保留整数)
(2)从3月1日至3月5日中任选两天,
①求种子发芽数恰有1天超过15颗的概率.
②若已知有一天种子发芽数是15颗,求另一天超过15颗的概率.
| 日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
| 温差x (度) | 10 | 11 | 13 | 12 | 9 |
| 发芽数y(颗) | 15 | 16 | 17 | 14 | 13 |
(1)请根据3月1日至3月5日的数据,求出y关于x的线性回归方程.据气象预报3月6日的昼夜温差为11℃,请预测3月6日浸泡的30颗种子的发芽数.(结果保留整数)
(2)从3月1日至3月5日中任选两天,
①求种子发芽数恰有1天超过15颗的概率.
②若已知有一天种子发芽数是15颗,求另一天超过15颗的概率.
3.设集合A=R,B={x|x>0},则从集合A到集合B的映射f只可能是( )
| A. | $x→y={(\frac{1}{3})^x}$ | B. | x→y=|x| | C. | x→y=log2x | D. | x→y=x2-2x |