题目内容
已知tanα=2(0<α<
),求下列各式的值:
(I)
(II)
sin(2α+
)+1
| π |
| 2 |
(I)
| sinα+2cosα |
| 4cosα-sinα |
(II)
| 2 |
| π |
| 4 |
(I)tanα=
=2,
且sin2α+cos2α=1,
∵0<α<
,得sinα>0,cosα>0
∴sinα=
,cosα=
∴原式=
=2
(II)原式=sin2α+cos2α+1
=2sinαcosα+2cos2α
=2×
×
+ 2(
)2
=
| sinα |
| cosα |
且sin2α+cos2α=1,
∵0<α<
| π |
| 2 |
∴sinα=
2
| ||
| 5 |
| ||
| 5 |
∴原式=
| ||||||||
4
|
(II)原式=sin2α+cos2α+1
=2sinαcosα+2cos2α
=2×
2
| ||
| 5 |
| ||
| 5 |
| ||
| 5 |
=
| 6 |
| 5 |
练习册系列答案
相关题目