题目内容
已知tanα=
-1函数f(x)=x2tan2α+xsin(2α+
)其中α∈(0,
)
(1)求f(x)的解析式;
(2)若数列{an}满足a1=
, an+1=f(an)(n∈N*)求证:
(i)an+1>an(n∈N*);
(ii)1<
+
+…+
<2(n≥2,n∈N*).
| 2 |
| π |
| 4 |
| π |
| 2 |
(1)求f(x)的解析式;
(2)若数列{an}满足a1=
| 1 |
| 2 |
(i)an+1>an(n∈N*);
(ii)1<
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
分析:(1)由tan2α=
=
=1,将tanα=
-1代入可求解,由α为锐角,得α,进而求得函数表达式.
(2)(i)由数列{an}满足a1=
, an+1=f(an)(n∈N*),知an+1=an2+an,由此能够证明an+1>an(n∈N*).
(ii)由数列{an}满足a1=
, ,an+1=an2+an=an(an+1),能够导出
=
-
,利用裂项求和法得到
+
+…+
=2-
,由此能够证明1<
+
+…+
<2(n≥2,n∈N*)
| 2tanα |
| 1-tan2α |
2
| ||
1-(
|
| 2 |
(2)(i)由数列{an}满足a1=
| 1 |
| 2 |
(ii)由数列{an}满足a1=
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
| 1 |
| an+1 |
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
解答:解:(1)解:∵tan2α=
=
=1
又∵α∈(0,
),
∴α=
,∴sin(2α+
)=1,
∴f(x)=x2+x.
(2)(i)∵数列{an}满足a1=
, an+1=f(an)(n∈N*),
∴an+1=an2+an,
∴an+1-an=an2>0,
∴an+1>an(n∈N*).
(ii)∵数列{an}满足a1=
, ,an+1=an2+an=an(an+1),
∴
=
=
-
,
∴
=
-
,
∴
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
=2-
,
∴1<
+
+…+
<2(n≥2,n∈N*).
| 2tanα |
| 1-tan2α |
2
| ||
1-(
|
又∵α∈(0,
| π |
| 2 |
∴α=
| π |
| 8 |
| π |
| 4 |
∴f(x)=x2+x.
(2)(i)∵数列{an}满足a1=
| 1 |
| 2 |
∴an+1=an2+an,
∴an+1-an=an2>0,
∴an+1>an(n∈N*).
(ii)∵数列{an}满足a1=
| 1 |
| 2 |
∴
| 1 |
| an+1 |
| 1 |
| an(an+1) |
| 1 |
| an |
| 1 |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| a1 |
| 1 |
| an+1 |
=2-
| 1 |
| an+1 |
∴1<
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
点评:本题考查函数解析式的求法和不等式的证明,具体涉及到正切函数的倍角公式、数列与函数、数列与不等式的综合,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目