题目内容

5.已知函数f(x)=x2+(a+8)x+a2+a-12,且f(a2-4)=f(2a-8),设等差数列{an}的前n项和为Sn,(n∈N*)若Sn=f(n),则$\frac{{S}_{n}-4a}{{a}_{n}-1}$的最小值为(  )
A.$\frac{27}{6}$B.$\frac{35}{8}$C.$\frac{14}{3}$D.$\frac{37}{8}$

分析 由题意可得等差数列的通项公式和求和公式,代入由基本不等式可得.

解答 解:由题意可得a2-4=2a-8或a2-4+2a-8=2×(-$\frac{a+8}{2}$),
解得a=1或a=-4,
当a=-1时,f(x)=x2+7x-12,数列{an}不是等差数列;
当a=-4时,f(x)=x2+4x,Sn=f(n)=n2+4n,
∴a1=5,a2=7,an=5+(7-5)(n-1)=2n+3,
∴$\frac{{S}_{n}-4a}{{a}_{n}-1}$=$\frac{{n}^{2}+4n+16}{2n+2}$=$\frac{1}{2}$•$\frac{(n+1)^{2}+2(n+1)+13}{n+1}$
=$\frac{1}{2}$•[(n+1)+$\frac{13}{n+1}$+2]≥$\frac{1}{2}$(2$\sqrt{(n+1)•\frac{13}{n+1}}$+2)=$\sqrt{13}$+1,
当且仅当n+1=$\frac{13}{n+1}$即n=$\sqrt{13}$-1时取等号,
∵n为正数,故当n=3时原式取最小值$\frac{37}{8}$.
故选:D.

点评 本题考查等差数列的通项公式,涉及基本不等式和不等式的性质,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网