题目内容
(1+
)+(2+
)+…+(n+
)=
+1-
+1-
.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n |
| n(n+1) |
| 2 |
| 1 |
| 2n |
| n(n+1) |
| 2 |
| 1 |
| 2n |
分析:把给出的数列分组后然后分别利用等差数列和等比数列的前n项和公式求和.
解答:解:(1+
)+(2+
)+…+(n+
)
=(1+2+3+…+n)+(
+
+
+…+
)
=
+
=
+1-
.
故答案为:
+1-
.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n |
=(1+2+3+…+n)+(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
=
| n(n+1) |
| 2 |
| ||||
1-
|
=
| n(n+1) |
| 2 |
| 1 |
| 2n |
故答案为:
| n(n+1) |
| 2 |
| 1 |
| 2n |
点评:本题考查了等差数列与等比数列的前n项和,考查了分组求和,是中档题.
练习册系列答案
相关题目