题目内容
在数列
中,
,且
.
(Ⅰ) 求
,猜想
的表达式,并加以证明;
(Ⅱ)设
,求证:对任意的自然数
都有
.
(Ⅰ)
,
(Ⅱ)![]()
所以![]()
所以只需要证明![]()
![]()
(显然成立),所以命题得证
解析试题分析:(Ⅰ)容易求得:
. 1分
故可以猜想
.下面利用数学归纳法加以证明:
显然当
时,结论成立. 2分
假设当
;
时(也可以
),结论也成立,即
,
. 3分
那么当
时,由题设与归纳假设可知:![]()
4分
即当
时,结论也成立,综上,对
,
成立. 6分
(Ⅱ)![]()
, 8分
所以![]()
. 10分
所以只需要证明![]()
![]()
(显然成立)
所以对任意的自然数
,都有
. 12分
考点:数学归纳法及数列求和
点评:数学归纳法用来证明与正整数有关的题目,证明步骤:1,证明当
时命题成立。2,假设当
时命题成立,借此证明当
是命题成立,综上1,2得证;数列求和常用的方法有分组求和裂项相消求和错位相减求和等
练习册系列答案
相关题目
设变量x,y满足约束条件
,则目标函数z=
的最大值为
| A.11 | B.10 | C.9. | D.13 |
设
满足约束条件
,
,
,若目标函数
的最大值为12,则
的最小值为( )
| A.5 | B.6 | C. | D. |