题目内容

4.设直线l1:(m+1)x-(m-3)y-8=0(m∈R),则直线l1恒过定点(2,2);若过原点作直线l2∥l1,则当直线l1与l2的距离最大时,直线l2的方程为x+y=0.

分析 直线l1:(m+1)x-(m-3)y-8=0(m∈R),化为:m(x-y)+(x+3y-8)=0,可得$\left\{\begin{array}{l}{x-y=0}\\{x+3y-8=0}\end{array}\right.$,解出可得直线l1恒过定点(2,2).过原点作直线l2∥l1,可设l2方程为:(m+1)x-(m-3)y=0,经过两点(0,0)与(2,2)的直线方程为:y=x.则当直线l1与l2的距离最大时,l2与直线y=x垂直.即可得出.

解答 解:∵直线l1:(m+1)x-(m-3)y-8=0(m∈R),化为:m(x-y)+(x+3y-8)=0,可得$\left\{\begin{array}{l}{x-y=0}\\{x+3y-8=0}\end{array}\right.$,解得x=y=2,
则直线l1恒过定点(2,2).
过原点作直线l2∥l1,可设l2方程为:(m+1)x-(m-3)y=0,
则经过两点(0,0)与(2,2)的直线方程为:y=x.
则当直线l1与l2的距离最大时,l2与直线y=x垂直.
直线l2的方程为x+y=0.
故答案分别为:(2,2);x+y=0.

点评 本题考查了相互平行与相互垂直的直线的斜率之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网