题目内容

已知函数f(x)=cosx[sin(x+
π
3
)-
3
sin(x+
π
2
)]+
3
4

(1)若f(
θ
2
+
12
)=
3
10
,0<θ<
π
2
,求tanθ的值;
(2)求函数f(x)的最小正周期和单调递增区间.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=
1
2
sin(2x-
π
3
),由f(
θ
2
+
12
)=
3
10
,可解得cosθ,又0<θ<
π
2
,可由同角三角函数关系式即可求sinθ,tanθ的值.
(2)由f(x)=
1
2
sin(2x-
π
3
),根据周期公式可求T,由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈Z可解得单调递增区间.
解答: 解:(1)∵f(x)=cosx[sin(x+
π
3
)-
3
sin(x+
π
2
)]+
3
4
=cosx(
1
2
sinx-
3
2
cosx)+
3
4
=
1
4
sin2x-
3
4
cos2x=
1
2
sin(2x-
π
3
),
∵f(
θ
2
+
12
)=
3
10
,故有:
1
2
sin[2(
θ
2
+
12
)-
π
3
]=
1
2
sin(θ+
6
-
π
3
)=
1
2
sin(θ+
π
2
)=
1
2
cosθ=
3
10

∴可解得:cosθ=
3
5

∵0<θ<
π
2
,sinθ=
1-cos2θ
=
4
5

∴tanθ=
sinθ
cosθ
=
3
5
4
5
=
3
4

(2)∵f(x)=
1
2
sin(2x-
π
3
),
∴T=
2
=π.
∴由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈Z可解得:x∈[kπ-
π
12
,kπ+
12
],k∈Z
∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ-
π
12
,kπ+
12
],k∈Z.
点评:本题主要考查了三角函数中的恒等变换应用,考查了正弦函数的图象和性质,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网