ÌâÄ¿ÄÚÈÝ
17£®Ä³ÊéµêÏúÊÛ¸Õ¸ÕÉÏÊеÄij֪ÃûÆ·ÅÆµÄ¸ßÈýÊýѧµ¥Ôª¾í£¬°´ÊÂÏÈÄⶨµÄ¼Û¸ñ½øÐÐ5ÌìÊÔÏú£¬Ã¿ÖÖµ¥¼ÛÊÔÏú1Ì죬µÃµ½Èç±íÊý¾Ý£º| µ¥¼Ûx£¨Ôª£© | 18 | 19 | 20 | 21 | 22 |
| ÏúÁ¿y£¨²á£© | 61 | 56 | 50 | 48 | 45 |
£¨2£©Ô¤¼Æ½ñºóµÄÏúÊÛÖУ¬ÏúÁ¿Óëµ¥¼Û·þ´Ó£¨1£©ÖеĻع鷽³Ì£¬ÒÑ֪ÿ²áµ¥Ôª¾íµÄ³É±¾ÊÇ14Ôª£¬
ΪÁË»ñµÃ×î´óÀûÈ󣬸õ¥Ôª¾íµÄµ¥¼ÛÓ¦¶¨Îª¶àÉÙÔª£¿
¸½£ºb=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬a=$\overline y$-b$\overline x$£®
·ÖÎö 1£©¼ÆËãÆ½¾ùÊý£¬ÀûÓù«Ê½Çó³öa£¬b£¬¼´¿ÉµÃ³öy¶ÔxµÄ»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©Éè»ñµÃµÄÀûÈóΪzÔª£¬ÀûÓÃÀûÈó=ÏúÊÛÊÕÈë-³É±¾£¬½¨Á¢º¯Êý£¬ÀûÓÃÅä·½·¨¿ÉÇó»ñµÃµÄÀûÈó×î´ó£®
½â´ð ½â£º£¨1£©¡ß$x=\frac{18+19+20+21+22}{5}=20£¬y=\frac{61+56+50+48+45}{5}=52$£¬
$s_y^2=\frac{1}{5}£¨{{9^2}+{4^2}+{2^2}+{4^2}+{7^2}}£©=33.2$£¬
¡ß$\sum_{i=1}^5{£¨{{x_i}-x}£©}£¨{{y_i}-y}£©=-40£¬{\sum_{i=1}^5{£¨{{x_i}-x}£©}^2}=10$£¬
¡à$b=\frac{{\sum_{i=1}^5{£¨{{x_i}-x}£©}£¨{{y_i}-y}£©}}{{{{\sum_{i=1}^5{£¨{{x_i}-x}£©}}^2}}}=-4£¬\widehata=y-\widehatbx=52+20¡Á4=132$£¬
ËùÒÔy¶ÔxµÄ»Ø¹éÖ±Ïß·½³ÌΪ£º$\widehaty=-4\widehatx+132$£®
£¨2£©»ñµÃµÄÀûÈóz=£¨x-14£©y=-4x2+188x-1848£¬
¡ß¶þ´Îº¯Êýz=-4x2+188x-1848µÄ¿ª¿Ú³¯Ï£¬
¡àµ±$x=\frac{188}{8}=23.5$ʱ£¬zÈ¡×î´óÖµ£¬
¡àµ±µ¥¼ÛÓ¦¶¨Îª23.5Ԫʱ£¬¿É»ñµÃ×î´óÀûÈó£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é»Ø¹é·ÖÎö£¬¿¼²é¶þ´Îº¯Êý£¬¿¼²éÔËËãÄÜÁ¦¡¢Ó¦ÓÃÒâʶ£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{3}{5}$ | B£® | $\frac{2}{5}$ | C£® | $\frac{3}{4}$ | D£® | $\frac{2}{3}$ |
| A£® | ¶Û½ÇÈý½ÇÐÎ | B£® | Èñ½ÇÈý½ÇÐÎ | C£® | Ö±½ÇÈý½ÇÐÎ | D£® | µÈÑüÈý½ÇÐÎ |