题目内容
8.p:?x0∈R,x${\;}_{0}^{2}$+m≤0,q:?x∈R,x2+mx+1>0,如果p,q都是命题且(¬p)∨q为假命题,则实数m的取值范围是( )| A. | m≤-2 | B. | -2≤m≤0 | C. | 0≤m≤2 | D. | m≥2 |
分析 p:?x0∈R,x${\;}_{0}^{2}$+m≤0,可得m≤$-{x}_{0}^{2}$,因此m≤0.可得¬p.q:?x∈R,x2+mx+1>0,△<0,解得m范围.即可得出(¬p)∨q.
解答 解:p:?x0∈R,x${\;}_{0}^{2}$+m≤0,∴m≤$-{x}_{0}^{2}$,因此m≤0.∴¬p:m>0.
q:?x∈R,x2+mx+1>0,△=m2-4<0,解得-2<m<2.
∴(¬p)∨q为:-2<m.
如果p,q都是命题且(¬p)∨q为假命题,
∴m≤-2.
故选:A.
点评 本题考查了函数的性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
20.周末甲乙两同学相约看电影,约定7点到8点在电影院门口会面,先到者等20分钟,若另一人还未到就先进场,设两人在这段时间内的各时刻到达是等可能的,且两人互不影响,则两人能在电影院门口会面的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{9}$ |
20.已知抛物线y2=4x上一动点M(x,y),定点N(0,1),则x+|MN|的最小值是( )
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$-1 | D. | $\sqrt{2}$-1 |
3.不等式x2-4x+3<0的解集为( )
| A. | (1,3) | B. | (-3,-1) | C. | (-∞,-3)∪(-1,+∞) | D. | (-∞,1)∪(3,+∞) |
13.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是( )
| A. | $[-\sqrt{3},\sqrt{3}]$ | B. | $(-∞,-\sqrt{3}]∪[\sqrt{3},+∞)$ | C. | $[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$ | D. | $[-\frac{2}{3},0]$ |
19.已知偶函数f(x)的定义域为R,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=3x-1;若关于x的方程$f(x)-{log_m}\frac{1}{x+2}=0$在x∈[0,5]上有4个不相等的实数根,则实数m的取值范围是( )
| A. | $(0\;,\;\frac{{\sqrt{7}}}{7})$ | B. | $(\frac{{\sqrt{7}}}{7}\;,\;1)$ | C. | $(\frac{{\sqrt{5}}}{5}\;,\;1)$ | D. | $(\frac{{\sqrt{7}}}{7}\;,\;\frac{{\sqrt{5}}}{5})$ |