题目内容
(本小题满分12分)
已知函数
,其中
.
(1)当
时,求
的单调递增区间;
(2)若
在区间
上的最小值为8,求
的值.
(1)
和
,(2)![]()
解析试题分析:(1)利用导数求函数单调区间,首先确定定义域:
然后对函数求导,在定义域内求导函数的零点:
,当
时,
,由
得
或
,列表分析得单调增区间:
和
,(2)已知函数最值,求参数,解题思路还是从求最值出发.由(1)知,
,所以导函数的零点为
或
,列表分析可得:函数增区间为
和
,减区间为
.由于
所以
,当
时,
,(舍),当
时,
由于
所以
且
解得
或
(舍),当
时,
在
上单调递减,满足题意,综上
.
试题解析:(1)定义域:
而
,当
时,
,由
得
或
,列表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目