题目内容

设f(x)=lg(10x+1)+ax是偶函数,那么a的值为(  )
A.1B.-1C.
1
2
D.-
1
2
法一:∵f(x)为偶函数
∴f(-1)=f(1)得:lg(10-1+1)-a=lg(10+1)+a
∴a=-
1
2

法二:∵f(x)为偶函数
∴对任意的实数x都有:f(-x)=f(x)
 即lg(10-x+1)-ax=lg(10x+1)+ax整理得:
?lg(10-x+1)-lg(10x+1)=2ax
?lg10-x=2ax
?102ax=10-x…(1)
如果(1)式对任意的实数x恒成立,则2a=-1
即a=-
1
2

故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网