题目内容

设向量
α
=(a,b),
β
=(m,n),其中a,b,m,n∈R,由不等式|
α
β
|≤|
α
|
•|
β
|恒成立,可以证明(柯西)不等式(am+bn)2≤(a2+b2)(m2+n2)(当且仅当
α
β
,即an=bm时等号成立),己知x,y∈R+,若
x
+3
y
<k•
x+y
恒成立,利用柯西不等式可求得实数k的取值范围是
 
分析:由(am+bn)2≤(a2+b2)(m2+n2),可得(
x
+3
y
)2
≤(1+9)(x+y),结合x,y∈R+
x
+3
y
<k•
x+y
恒成立,即可求得实数k的取值范围.
解答:解:∵(am+bn)2≤(a2+b2)(m2+n2),
(
x
+3
y
)2
≤(1+9)(x+y),
x
+3
y
10
x+y

∵x,y∈R+
x
+3
y
<k•
x+y
恒成立,
∴k>
10

故答案为:k>
10
点评:本题考查柯西不等式,考查学生运用数学知识解决问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网