题目内容

15.已知函数y=f(x)在x=x0处的导数为11,则
$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-11;
$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{2({x}_{0}-x)}$=-$\frac{11}{2}$.

分析 化简可得$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$,$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{2({x}_{0}-x)}$=-$\frac{1}{2}$$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{x-{x}_{0}}$.

解答 解:∵函数y=f(x)在x=x0处的导数为11,
∴$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=-11,
$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{2({x}_{0}-x)}$=-$\frac{1}{2}$$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{x-{x}_{0}}$=-$\frac{1}{2}$×11=-$\frac{11}{2}$,
故答案为:-11,-$\frac{11}{2}$.

点评 本题考查了函数的导数的定义及极限的求法与运算法则的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网