题目内容
15.函数f(x)=$\frac{alnx}{x}$的图象在点(e2,f(e2))处的切线与直线y=-$\frac{1}{{e}^{4}}$x平行,则f(x)的极值点是x=e.分析 求出函数的导数,根据f′(e2)=-$\frac{a}{{e}^{4}}$=-$\frac{1}{{e}^{4}}$,求出a的值,从而求出f(x)的解析式,求出函数的导数,解关于导函数的方程,求出函数的极值点即可.
解答 解:f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$,
故f′(e2)=-$\frac{a}{{e}^{4}}$=-$\frac{1}{{e}^{4}}$,解得:a=1,
故f(x)=$\frac{lnx}{x}$,f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)=0,解得:x=e,
经检验x=e是函数的极值点,
故答案为:x=e.
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.
练习册系列答案
相关题目
5.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{{a}^{2}}{2-b}$的取值范围是( )
| A. | (0,+∞) | B. | (0,1) | C. | (0,$\frac{1}{2}$) | D. | [1,+∞) |
10.已知a=5+2$\sqrt{6}$,b=5-2$\sqrt{6}$,则a与b的等差中项、等比中项分别为( )
| A. | 5,1 | B. | $2\sqrt{6}$,1 | C. | $2\sqrt{6}$,±1 | D. | 5,±1 |
7.已知向量$\overrightarrow{a}$=(2k-3,-6),$\overrightarrow{b}$=(2,1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为( )
| A. | 2 | B. | -2 | C. | -3 | D. | 3 |
5.设A={x|x是小于9的正整数},B={3,4,5,6},则∁AB等于( )
| A. | {1,2,3,4,5,6} | B. | {7,8} | C. | {4,5,6,7,8} | D. | {1,2,7,8} |