题目内容
15.已知$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,则cos(-α)=( )| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
分析 由已知利用诱导公式及同角三角函数基本关系式求解.
解答 解:∵$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,
∴cos(-α)=cosα=$-\sqrt{1-si{n}^{2}α}=-\sqrt{1-(\frac{1}{3})^{2}}=-\frac{2\sqrt{2}}{3}$.
故选:D.
点评 本题考查同角三角函数基本关系式的应用,是基础的计算题.
练习册系列答案
相关题目
6.一动圆与圆x2+y2=1外切,与圆x2+y2-6x-91=0内切,则动圆的圆心的轨迹是( )
| A. | 一个椭圆 | B. | 一条抛物线 | C. | 双曲线的一支 | D. | 一个圆 |
10.在市委市政府扶贫的推动下,安顺某乡镇企业的年产值逐年增长,如表统计了2011~2015年五年的年产值,其中x依次为年份代号(2011年用1代替,其他年份代号顺推),y为年产值(万元).
参考公式:
回归直线的方程是:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(Ⅰ)利用最小二乘法计算年产值y(万元)关于年份代号x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)预测2017年该企业的年产值.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 220 | 250 | 285 | 340 | 405 |
回归直线的方程是:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\stackrel{-2}{x}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(Ⅰ)利用最小二乘法计算年产值y(万元)关于年份代号x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)预测2017年该企业的年产值.
9.已知函数f(x)=ln$\frac{1-x}{3+x}$+x3+3x2+3x,则下列说法正确的是( )
| A. | 函数f(x)的图象关于x=-1对称 | B. | 函数f(x)的图象关于y=-1对称 | ||
| C. | 函数f(x)的图象关于(-1,0)中心对称 | D. | 函数f(x)的图象关于(-1,-1)中心对称 |
7.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).已知甲厂生产的产品共有98件,下表是乙厂的5件产品的测量数据:
(1)求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).
| 编号 | 1 | 2 | 3 | 4 | 5 |
| x | 169 | 178 | 166 | 175 | 180 |
| y | 75 | 80 | 77 | 70 | 81 |
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).