题目内容
6.一动圆与圆x2+y2=1外切,与圆x2+y2-6x-91=0内切,则动圆的圆心的轨迹是( )| A. | 一个椭圆 | B. | 一条抛物线 | C. | 双曲线的一支 | D. | 一个圆 |
分析 由题意首先设出动圆的圆心与半径,然后结合几何关系和圆锥曲线的定义即可求得最终结果.
解答 解:设动圆的圆心为M,半径为R,则:
圆x2+y2=1的圆心F1(0,0),半径r1=1,
圆x2+y2-6x-91=0圆心F2(3,0),半径r2=10;
根据题意,得|MF1|=R+1,|MF2|=10-R;
∴|MF1|+|MF2|=(R+1)+(10-R)=11,
又|F1F2|=3<|MF1|+|MF2|;
∴点M的轨迹是椭圆,
即动圆的圆心的轨迹是一个椭圆.
故选:A.
点评 本题考查了圆与圆的位置关系,轨迹方程问题,圆锥曲线的定义等,重点考查学生对基础概念的理解和计算能力,属于中等题.
练习册系列答案
相关题目
14.已知函数y=3sin(x+$\frac{π}{5}$)的图象C.为了得到函数y=3sin(2x-$\frac{π}{5}$)的图象,只要把C上所有的点( )
| A. | 先向右平行移动$\frac{π}{5}$个单位长度,然后横坐标伸长到原来的2倍,纵坐标不变 | |
| B. | 先横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,然后向左平行移动$\frac{π}{5}$个单位长度 | |
| C. | 先向右平行移动$\frac{2π}{5}$个单位长度,然后横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 | |
| D. | 先横坐标伸长到原来的2倍,纵坐标不变,然后向左平行移动$\frac{2π}{5}$个单位长度 |
1.抛物线y=4x2的准线方程为( )
| A. | x=-1 | B. | x=1 | C. | y=-$\frac{1}{16}$ | D. | y=$\frac{1}{16}$ |
11.设函数f(x)的导函数为f′(x),对任意x∈R,都有xf′(x)<f(x)成立,则( )
| A. | 2f(2)<f(4) | B. | 2f(2)=f(4) | ||
| C. | 2f(2)>f(4) | D. | 2f(2)与f(4)的大小不确定 |
15.已知$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,则cos(-α)=( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |