题目内容
3.求函数f(x)=x5+5x4+5x3+1在区间[-1,4]上的最大值与最小值.分析 讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.
解答 解:f′(x)=5x4+20x3+15x2=5x2(x+3)(x+1),
当f′(x)=0得x=0,或x=-1,或x=-3,
∵0∈[-1,4],-1∈[-1,4],-3∉[-1,4]
列表:
| x | -1 | (-1,0) | 0 | (0,4) | |
| f′(x) | 0 | + | 0 | + | |
| f(x) | 0 | 增 | 1 | 增 |
∴函数y=x5+5x4+5x3+1在区间[-1,4]上的最大值为2625,最小值为0.
点评 本题主要考查了利用导数求闭区间上函数的最值,求最值是高考中常见问题,属于基础题.
练习册系列答案
相关题目
14.已知函数y=3sin(x+$\frac{π}{5}$)的图象C.为了得到函数y=3sin(2x-$\frac{π}{5}$)的图象,只要把C上所有的点( )
| A. | 先向右平行移动$\frac{π}{5}$个单位长度,然后横坐标伸长到原来的2倍,纵坐标不变 | |
| B. | 先横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,然后向左平行移动$\frac{π}{5}$个单位长度 | |
| C. | 先向右平行移动$\frac{2π}{5}$个单位长度,然后横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 | |
| D. | 先横坐标伸长到原来的2倍,纵坐标不变,然后向左平行移动$\frac{2π}{5}$个单位长度 |
11.设函数f(x)的导函数为f′(x),对任意x∈R,都有xf′(x)<f(x)成立,则( )
| A. | 2f(2)<f(4) | B. | 2f(2)=f(4) | ||
| C. | 2f(2)>f(4) | D. | 2f(2)与f(4)的大小不确定 |
8.已知斜率为1的直线l过抛物线y=$\frac{1}{4}$x2的焦点,交该抛物线于A,B两点,则A,B中点的横坐标为( )
| A. | 2$\sqrt{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 4 |
15.已知$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,则cos(-α)=( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
15.设非负实数x和y满足$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-4≤0\\ x+4y-4≤0\end{array}\right.$,则z=3x+y的最大值为( )
| A. | 2 | B. | $\frac{14}{3}$ | C. | 6 | D. | 12 |