题目内容

10.过椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1内一点P(3,1),且被这点平分的弦所在直线的方程是3x+4y-13=0.

分析 设出以点P(3,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),利用点差法可求得以P(3,1)为中点的弦所在直线的斜率.再由点斜式可求得直线方程.

解答 解:设以点P(3,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),
则x1+x2=6,y1+y2=2.
又$\frac{{{x}_{1}}^{2}}{16}+\frac{{{y}_{1}}^{2}}{4}$=1,①
$\frac{{{x}_{2}}^{2}}{16}+\frac{{{y}_{2}}^{2}}{4}$=1,②
①-②得:$\frac{{{(x}_{1}+{x}_{2})(x}_{1}-{x}_{2})}{16}$+$\frac{{(y}_{1}+{y}_{2}){(y}_{1}-{y}_{2})}{4}$=0
又据对称性知x1≠x2
∴以点P(3,1)为中点的弦所在直线的斜率k=-$\frac{1×6}{4×2}$=-$\frac{3}{4}$,
∴中点弦所在直线方程为y-1=-$\frac{3}{4}$(x-3),即3x+4y-13=0.
故答案为:3x+4y-13=0.

点评 本题主要考查了直线与椭圆相交关系的应用,要掌握这种设而不求的方法在求解直线方程中的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网